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Introduction

In the era bounded by Galileo’s Dialogo of 1632 and Newton’s Prin-
cipia of 1687, science changed. Observation, even when performed
with enough care to be called experimentation, gave way to rigor-
ous mathematical analysis as the primary approach to physical phe-
nomena. Whereas Galileo aimed to instruct laymen about his view
of the world order by means of plausible arguments and analogies,
only an experienced mathematician could hope to understand the
world picture envisioned by the Principia. This mathematization
of physics was a defining element of that intellectual upheaval we
call the Scientific Revolution, and the requirement, still imposed
today, that a theoretical physicist be an able mathematician stems
from a tradition that flowered in the seventeenth century.

Such sweeping change cannot be attributed to one particular mo-
ment or person. Yet the development of this interrelationship be-
tween mathematics and physics has remained too long in the realm
of vague generalizations, whose validity has yet to be substantiated
by a careful comparison with actual events. A new difficulty arises,
however, because the particulars against which any generalization
must be tested are not well documented. It is the latter deficiency
that this book addresses by focusing on a specific person and event
in the development of mathematical physics during the seventeenth
century. This is a modest endeavor, designed not to explain the
greater phenomenon but to provide a case study that any general
account must encompass. The person is Christiaan Huygens; the
event is his creation of the theory of evolutes.!

Preeminent mathematician, physicist, and astronomer, Chris-
tiaan Huygens (1629-95) was one of the major figures of the Scien-
tific Revolution. Second son of the great Dutch poet and diplomat
Constantijn Huygens, he was introduced at a very young age into
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a learned, cosmopolitan society and rapidly distinguished himself
in mathematics and observational astronomy. His early achieve-
ments included studies on classical mathematics in the Archime-
dean and Apollonian traditions, an approximation of pi, the first
printed treatise on probability, the discovery of one of Saturn’s
moons (Titan), the correct explanation of Saturn’s varying profile
(his ring hypothesis), and an unpublished treatise on the mechanics
of impact. By his midthirties he had acquired such international
acclaim that he was called to the court of Louis XIV to participate
in the formation of the Académie Royale des Sciences, and there
he remained for almost twenty years, except for trips home during
periods of debilitating illness. Cited in modern histories of science
primarily for his wave theory of light, his work on centrifugal force,
his analysis of percussion, and the Huygens ocular for telescopes,
he is regarded as the last great proponent of the mechanical philos-
ophy (usually equated with Cartesianism).2

The design and development of clocks was one problem that in-
terested Huygens throughout his life. In 1657, he created a clock
whose advance was regulated by a pendulum, and consequently he
has usually been designated the inventor of the pendulum clock.?
Galileo Galilei had also considered using the pendulum as a time-
keeper and had even given his son instructions on how to build a
clock regulated by a swinging rod, a task never completed. Both
Huygens and Galileo hoped that the new design would greatly im-
prove the accuracy of astronomical measurements and make possi-
ble a precise determination of longitude at sea. Both scientists have
partisans claiming priority of invention for their candidate’s de-
sign, although still other enthusiasts argue that Leonardo da Vinci
invented the pendulum clock.* As with most mechanical devices,
priority of invention depends on whether the emphasis and value
are placed on the basic design, on the construction of a physical
model, or on the accuracy of the mechanism once constructed.
Huygens’s claim rests on the last criterion, for in addition to mount-
ing the pendulum on the clock in a better manner, he instituted
features that guaranteed far greater accuracy - for example, the
endless chain, which made it possible to wind the clock without
disturbing its progress. In 1658, Huygens published his Horolog-
ium, a description of his most recent design incorporating these
advances, and thereby popularized the pendulum clock.’
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A little more than a year later, Huygens began planning a sec-
ond edition of this Horologium in order to incorporate a wealth of
discoveries and consequent designs that he had developed in the
meantime. Many years passed before this new work, one of the
masterpieces of seventeenth-century scientific literature, was finally
published in 1673 under the title Horologium Oscillatorium (The
pendulum clock). Much more than a mere description of a clock,
as the earlier work had been, it was in fact a treatise on the accel-
erated motion of a falling body, as exemplified by the bob of a
pendulum clock.6

The book is divided into five parts, the first describing the me-
chanical features of a clock designed by Huygens. This clock (Fig.
1.1) included the endless chain, a lens-shaped bob that minimized
air resistance, the curseur weight that allowed fine adjustment of
the period of swing, and a pair of plates that were curved in the
shape of an inverted cycloid and mounted on either side of the
pendulum.

The second part of the Horologium Oscillatorium is a series of
propositions on gravitational fall, beginning with free fall, includ-
ing linear fall along inclined planes, and ending with fall along a
curved path. The culminating proposition is Huygens’s proof that a
body falling along an inverted cycloid (Fig. 1.2) reaches the bottom
in a fixed amount of time, irrespective of the point on the path at
which it begins its fall. In other words, the cycloid is isochronous.’

The third section of Huygens’s great work introduces his theory
of evolutes, a mathematical correspondence between curves that,
among other applications, allows one to find the length of a curve.
Using evolutes, Huygens justifies his introduction of the curved
plates to the clock that he describes in Part 1, for he proves mathe-
matically that the cycloidal-shaped plates will force the bob of the
pendulum to move along the isochronous cycloidal path. Thus,
ideally, the pendulum will keep uniform time regardless of how
wide it swings, as he has shown in Part 2.

The fourth, and longest, section of the Horologium Oscillator-
ium deals with the physical, rather than the ideal, pendulum. Here
Huygens presents his theory of the compound pendulum, in which
the motion of a pendulum with mass distributed along its length is
compared with that of an ideal simple pendulum of weightless cord
and point-mass bob.
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Figure 1.1. The clock of the Horologium Oscillatorium.

The last part of the book introduces a second timepiece, one that
is a variant of a conical clock in which the pendulum, instead of
swinging, rotates about a vertical axis. As with the cycloidal pendu-
lum of Part 1, the bob is kept on an isochronous path by a curved
plate whose shape is also determined by the theory of evolutes.
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Figure 1.2. An inverted cycloid, drawn by tracing the path of a fixed point A
on the generating circle’s rim as it rolls counterclockwise along a straight line.

Following the description of this clock Huygens lists, without
proofs, thirteen theorems on centrifugal force that form the theo-
retical justification of the pendulum’s motion, in the same way that
the theorems of Part 2 validate the clock of Part 1. The proofs of
these theorems eventually appeared in the posthumously published
De Vi Centrifuga.

The contents of the Horologium Oscillatorium are tied together
much more closely than has ever been hinted in previous litera-
ture. Except for Part 4, which was not written until 1664, the entire
treatise was essentially developed in a three-month period begin-
ning in October 1659. During that time, Huygens proceeded rap-
idly, almost inexorably, from one creative event to another until
the major theorems of the Horologium Oscillatorium, and De Vi
Centrifuga, were revealed. This progression of ideas can be recon-
structed in considerable detail by a careful examination of the mas-
sive evidence in the Oeuvres complétes de Christiaan Huygens and
by a return to the original manuscripts, some of which are not in-
cluded in the Oeuvres complétes.® A reconstruction of this period
of great creativity is first and foremost a study of Huygens’s meth-
od of research, and as such affords a detailed examination of the
interaction between his mathematics and his physics.

Huygens’s theory of evolutes, the key mathematical concept to
emerge from this work of 1659, provides a natural focal point for
such a study, since it was as much a physical as a mathematical
idea, both in its roots and in its applications. This duality is evident
in the definitions of the evolute and its companion, the involute.
Although viewed today as a feature of pure mathematics, the evo-
lute was originally conceived by Huygens in mechanical terms, and
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Figure 1.3. The mechanical evolution of an
involute from the unrolling of its evolute.

its origin is reflected in its very name, which comes from the parti-
ciple evolutus (unrolled) of the Latin verb evolvere (to unroll).®
Given a curve ABC (Fig. 1.3), called the evolute, it is “unrolled”
by the simple expedient of fitting a thread (filum) to its shape and
carefully unwinding the thread from one end, with the freed end
of the thread always pulled taut. The end of the thread, which be-
gins at 4 and moves out toward S and thence to T as the thread
unrolls, traces out a companion curve, which Huygens always re-
ferred to as “that drawn by the unrolling” (descripta ex evolutione)
and which modern mathematics labels the involute.”

Although Huygens defined the relationship between evolute and
involute mechanically, in practice he derived the evolute mathe-
matically from a given involute. Given a curve MPQ (Fig. 1.4),
where Q is infinitesimally close to P, the intersection N of the nor-
mal to P (the line perpendicular to the tangent at P) and the nor-
mal to Q is presumed to lie on the evolute. In modern terminology,
never used by Huygens, the evolute is the locus of the instanta-
neous centers of rotation or curvature of the involute. The two ap-
proaches — mechanically deriving the involute and mathematically
deriving the evolute - are equivalent, and one of Huygens’s first
tasks in Part 3 of the Horologium Oscillatorium is to show the
uniqueness of the relationship between evolute and involute, by
proving that the tangents to the evolute (the mechanical approach)
are normals to the involute (the mathematical avenue).! Note that
any curve can function as either an evolute or an involute; its role
depends on the circumstances of the problem at hand.
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Figure 1.4. The mathematical derivation of
an evolute from the normals to its involute.

Evolutes grew out of Huygens’s studies of the pendulum; the
complete theory was a product of his mathematical response to a
physical question. However, evolutes formed only one part of a
rich matrix of mathematical techniques that Huygens used to at-
tack the problems presented him in late 1659. Those techniques and
how they helped him deal successfully with physical questions are
a major concern of this book.

A caveat is therefore in order: Mathematics ahead! I have tried to
avoid introducing extraneous mathematical material, and in partic-
ular I have minimized the introduction of modern equivalents to
the techniques used by Huygens, with most of the exceptions rele-
gated to the notes as shorthand aids. This procedure should (1) ag-
gravate those mathematical adepts who seek an easy understanding
of his solutions, (2) please my fellow purists who feel that histori-
cal accuracy and insight are lost when results are couched in modern
terms (see the Preface for a confession regarding compromises),
and (3) bore those who cannot understand the mathematics in what-
ever format it is presented. For the sake of the last group, I have
tried to make sure that the derivations can be skipped or at least
skimmed without loss of the underlying story. However, the purpose
of this book is to demonstrate Huygens’s mathematics at work in
the formation of his physics and vice versa, and thus the mathemat-
ics cannot be relegated to the notes. On the contrary, focusing on
his original derivations yields a rare glimpse of creativity in action.

The question that initiated Huygens’s intensive period of research
at the end of 1659, which culminated in the theory of evolutes and
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the cycloidal-pendulum clock, is easy to state, appearing almost
inconsequential. How it leads to such fertile results reveals a mas-
ter of seventeenth-century science in the process of discovery. The
question: What is the constant of gravitational acceleration?



